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Generalization or Memorization: Evaluating Data
Contamination for Large Language Models

Yihong Dong, Xue Jiang, Xuanming Zhang, Huanyu Liu, Zhi Jin,
Bin Gu, Mengfei Yang, and Ge Li

Abstract—Recent statements about the impressive capabilities of large language models (LLMs) are usually supported by evaluating on
open-access benchmarks. Considering the vast size and wide-ranging sources of LLMs’ training data, it could explicitly or implicitly
include test data, leading to LLMs being more susceptible to data contamination. However, due to the opacity of training data, the
black-box access of models, and the rapid growth of synthetic training data, detecting and mitigating data contamination for LLMs faces
significant challenges. In this paper, we propose CDD, which stands for Contamination Detection via output Distribution for LLMs. CDD
necessitates only the sampled texts to detect data contamination, by identifying the peakedness of LLM’s output distribution. To mitigate
the impact of data contamination in evaluation, we present TED: Trustworthy Evaluation via output Distribution, based on the correction
of LLM’s output distribution. To facilitate this study, we introduce two benchmarks, i.e., DETCON and COMIEVAL, for data contamination
detection and contamination mitigation evaluation tasks. Extensive experimental results show that CDD achieves the average relative
improvements of 21.8%-30.2% over other contamination detection approaches in terms of Accuracy, F1 Score, and AUC metrics, and can
effectively detect implicit contamination. TED substantially mitigates performance improvements up to 66.9% attributed to data
contamination across various contamination setups. In real-world applications, we reveal that ChatGPT exhibits a high potential to suffer
from data contamination on HumanEval benchmark. Moreover, we also introduce a new evaluation metric MGI, Memorization
Generalization Index, to assess the generalizability of LLM’s evaluation results on the benchmark. MGI is applied to well-known
open-source LLMs, offering a novel dimension for evaluating model performance on the benchmark.

Index Terms—Large Language Models, Data Contamination, Contamination Detection, Evaluation.
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1 INTRODUCTION

IN recent years, LLMs have revolutionized the fields of natural
language processing (NLP), artificial intelligence, and software

engineering. To evaluate LLMs’ capabilities in various downstream
tasks, such as automatic question answering, natural language
reasoning, and code generation, people conduct extensive tests
for LLMs based on enormous benchmark datasets [1], [2]. The
results indicate that LLMs exhibit superior performance on these
tasks. While marveling at the powerful capabilities of LLMs,
people usually want to determine whether an LLM’s excellent
performance is due to the genuine understanding of tasks to achieve
generalization, or merely because it has seen the test data to form
memorization, i.e., suffering from data contamination.

Data contamination, also known as data leakage, refers to
the scenario where the test data has been included in the model’s
training data [3], [4], leading to the model performing exceptionally
well on these leaked test data. Owing to the vast size and wide-
ranging sources of the pre-trained datasets for LLMs, they are
more susceptible to data contamination, which can be primarily
categorized into two situations: 1) For existing benchmark datasets,
they are more easily leaked because of massive text quotes, code
reuse, and synthetic data in LLMs’ training data. 2) For upcoming
benchmark datasets, newly constructed test data may already
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Fig. 1. An example of data contamination affecting LLMs’ performance,
where CodeLlama is fine-tuned on HumanEval (as leaked data) + 50K
StarCoder data excluding MBPP (as unleaked homogeneous data).

exist in the continuously evolving training data of LLMs since
people are usually unaware of the specifics of LLMs’ training data.
Consequently, it becomes formidable to prevent data contamination
for LLMs.

Data contamination exerts a profound and deleterious impact on
LLMs [5], [6], [7]. As shown in Figure 1, with LLMs continuing to
learn on contaminated data (i.e., both leaked data and other training
data), their performance keeps improving on leaked data but
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stagnates and even degrades on similar data. This example reflects
that data contamination can lead to a substantial overestimation
of models’ performance, thus affecting the trustworthiness and
effectiveness of LLMs in practical applications. Furthermore, data
contamination may also conceal the potential flaws of models,
presenting major obstacles for people to identify and improve upon
LLMs’ shortcomings [8]. Therefore, it is crucial for LLMs to detect
data contamination and ensure trustworthy evaluation.

Although acknowledged the significance, data contamination
detection and trustworthy evaluation for LLMs still persist as
open and challenging issues [9], [10]. The difficulties of data
contamination detection can be essentially attributed to three
factors: 1) Opaque Training Data. It is usually non-public and
comprehensive, while continuously evolving for new LLMs. 2)
Black Box Models. The parameters and output probabilities of
LLMs may not be available, such as ChatGPT and GPT-4 [11]. 3)
Proliferation of Synthetic Data. It could implicitly introduce the
variants1 of test data to training data. Further, the evaluation to
mitigate the impact of data contamination has hardly been studied.

In this paper, we overcome the preceding challenges by
proposing CDD: Contamination Detection via output Distribution
for LLMs. CDD uses the sampled texts to identify the peakedness
of LLM’s output distribution for data contamination detection.
We follow a hypothesis that training is likely to alter the model’s
output distribution, resulting in a more peaked output distribution
for training data, thereby tending the model towards specific outputs
on these data. On this basis, we also present TED: Trustworthy
Evaluation via output Distribution, which is designed to mitigate
the impact of data contamination in evaluation by correcting LLM’s
output distribution. Additionally, we propose an evaluation metric
called MGI, namely Memorization Generalization Index, designed
to measure the generalizability of LLM’s evaluation results on the
benchmarks.

We construct two new datasets, i.e., DETCON and COMIEVAL,
for data contamination detection and contamination mitigation
evaluation tasks, respectively. Experimental results demonstrate
that CDD achieves state-of-the-art (SOTA) performance and is also
suitable for identifying implicit contamination, i.e., existing the
variants of test data in training data. TED successfully mitigates the
impact of data contamination in evaluation across various scenarios.
In real-world applications, we also provide strong evidence that
ChatGPT suffers from data contamination on HumanEval dataset.
Furthermore, MGI can provide a new dimension to assess the
LLM’s performance on the benchmarks, assisting developers in
selecting LLMs with comparable performance on these benchmarks.
The code and datasets of our work are available at https://github.
com/YihongDong/CDD-TED4LLMs.

The main contribution of our work can be summarized as
follows:

• We propose CDD to detect data contamination for both
explicit and implicit contamination by identifying the
peakedness of LLM’s output distribution, requiring only
the sampled texts from LLMs.

• We present TED to counteract the effects of data contami-
nation for trustworthy evaluation by correcting the output
distribution.

1. These variants may include, but are not limited to, translations into other
languages, additions of explanations or intermediate processes, and provisions
of alternate solutions.

Training Data
Normal
Abnormal

Fig. 2. The illustration of LLMs’ output distribution.

• We introduce MGI to evaluate the generalizability of
LLM’s performance on the benchmarks, offering a fresh
perspective for model performance assessment.

• We construct two datasets, DETCON and COMIEVAL, for
data contamination detection and contamination mitigation
evaluation tasks, facilitating future works in this direction.

• Extensive experiments demonstrate that CDD significantly
outperforms other approaches and TED can mitigate
contamination across various contamination setups.

• In real-world applications, our analysis reveals that Chat-
GPT has a high potential to suffer from data contamination
on HumanEval benchmark. We also apply MGI to mul-
tiple well-known open-source LLMs on the benchmark,
assessing the generalizability of their performance.

This paper is an extension version of our work originally
reported in the work [12]. The major differences between this
paper and the initial version include the introduction of a new
metric, MGI, for evaluating the generalization of LLMs on
benchmarks (§ 3.4), applications of MGI to multiple LLMs
(§ 4.5.2), experiments on CDD under multi-source contamination
(§ 4.2.2), case studies (§ 4.4), and more settings, baselines and
analysis of experiments (§ 4.2.1 and § 4.5.1).

2 MOTIVATION EXAMPLE

A powerful LLM that transcends memorization has the capability to
generate diverse outputs in response to a given input. Considering
the huge vocabulary size of LLMs, which encompasses a good
number of tokens with analogous semantics, the output distribution
sampled from LLMs ought to not exhibit peakedness. However,
when LLMs solely form memorization via training, LLMs are
prone to generate outputs that abnormally resemble their training
data, as shown in Figure 2. From a statistical perspective, assuming
that the average probability of LLM’s output tokens is 0.95, the
likelihood of sampling two outputs that contain the same 100
consecutive tokens is about 0.005 < 0.01, which is an extremely
improbable event. Therefore, if an LLM consistently outputs some
identical or highly similar texts through sampling, it is most likely
caused by memorization.
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Fig. 3. The output distributions of LLMs as modeled by edit distance
across varying degrees of data contamination (with the same setting as
Figure 1).

Figure 3 displays an example of how the LLM’s output
distribution changes as the degree of data contamination varies.
We model the LLM’s output distribution by computing the edit
distances of sampled texts, referred to as edit distance distribution
(§ 3.1). As shown in Figure 3, in the absence of data contamination
(i.e., occurrence 0), the density of zero edit distance stands at
0.0035, where zero edit distance means that sampled texts exactly
match. However, upon the LLM being exposed to the leaked data
even once (i.e., occurrence 1) during training, the density of zero
edit distance escalates sharply to more than 20 times larger than
the original, showing the peakedness. Therefore, the impact of data
contamination on the LLM’s output distribution is substantial.

In this paper, to the best of our knowledge, we are the first
to consider from the standpoint of LLMs’ output distribution
to address the challenges associated with data contamination
detection and contamination mitigation evaluation, employing only
the sampled texts without access to the output probability and
training data.

3 METHODOLOGY

In this section, we first establish the edit distance distribution
(§ 3.1), and then on this basis, we design CDD for data con-
tamination detection (§ 3.2), TED for contamination mitigation
evaluation (§ 3.3). Finally, we introduce MGI for evaluating the
generalizability of model performance on the benchmark (§ 3.4).

3.1 Edit Distance Distribution

Edit distance [13] is a measure of similarity between two strings,
which is defined as the minimum number of operations required to
transform one string into the other. The operations typically include
insertion, deletion, or substitution of a single character.

Considering the generation of LLMs is based on tokens instead
of characters, we adopt token-level edit distance in this paper.

Given two strings a and b, token-level edit distance is calculated
as:

ED(a, b) =



Len(a) if Len(b) = 0,

Len(b) if Len(a) = 0,

ED(Tail(a),Tail(b)) if Head(a) = Head(b),

1 + min


ED(Tail(a), b)

ED(a,Tail(b))

ED(Tail(a),Tail(b))

otherwise,

(1)
where Len(a) means the length of tokenized a, Head(a) means
the first token of tokenized a, Tail(a) means the string consists
of all tokens of tokenized a following Head(a). We use dynamic
programming to speed up calculations and rolling arrays to reduce
space overhead.

Given an LLM, we can model its output distribution by
computing the edit distances of sampled texts S = {s1, s2, ..., sn},
where n is the number of samples. Specifically, we define the
density function ρ as:

ρ(d) =

n−1∑
i=1

n∑
j=i+1

I(ED(si, sj) = d)

n ∗ (n− 1)/2
, (2)

where d ∈ Z≥0 and I(·) is the indicator function that outputs 1 if
the condition is true, otherwise 0.

3.2 CDD for Data Contamination Detection
Given a test data {x, y} consisting of a prompt x and the
corresponding answer y, we aim to detect if this data has been
trained by the model M. Note that it is also applicable to
membership inference attacks (MIA), where x represents the
preceding text and y denotes the subsequent text.

We sample S from M with the input x to calculate ρ. For data
contamination detection, the calculation of ρ can be simplified as:

ρ′(d) =

n∑
i=1

I(ED(si, y) = d)

n
. (3)

However, ρ′(d) assumes that test data must be explicitly leaked in
its original form {x, y}, and does not take into account the possible
implicit contamination of the variant form, i.e., {x, ŷ}.

Through observation, we find that the copy percentage of model
outputs increases as the degree of data contamination increases, as
shown in Figure 1. Therefore, we approximate y by the model’s
output texts and finally choose to replace y with the model’s
greedy search text st=0, which can be easily achieved by setting
temperature t = 0 when sampling. Thus,

ρ∗(d) =

n∑
i=1

I(ED(si, st=0) = d)

n
. (4)

In this work, we employ ρ∗(d) to measure edit distance distribution
by default.

Further, we define the peakedness of edit distance distribution
as

Peak(M;x) = F (d ≤ α · l) =
α·l∑
d=0

ρ∗(d), (5)

where F is the cumulative distribution function, α ∈ [0, 1] is a
hyper-parameter to control the similarity, and and l is defined as:

l = max({Len(s) | s ∈ S}). (6)
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Through identifying the peakedness, CDD can detect data
contamination on test data as:

CDD(M;x) =

{
Leaked if Peak(M;x) > ξ,

Unleaked if Peak(M;x) ≤ ξ,
(7)

where ξ ∈ [0, 1] is hyper-parameter to control the threshold. The
pseudocode of CDD for data contamination detection is shown in
Algorithm 1.

Algorithm 1 The pseudocode of CDD
Require: LLM M, the prompt of test data x, and hyper-parameter

α = 0.05, ξ = 0.01.
Ensure: Contamination status cs.

1: Sample S from M with the input x.
2: Model ρ∗(d) via Eq. (4)
3: Compute Peak(M;x) via Eq. (5).
4: Detect cs via Eq (7)
5: return cs.

3.3 TED for Contamination Mitigation Evaluation

We achieve contamination mitigation evaluation using TED, which
includes two rules to correct the LLM’s output distribution, i.e.,
exclude peakedness and remove duplicates.

1) Exclude Peakedness. We hope to restore the uncontaminated
sampling results by excluding the peakedness in the LLM’s output
distribution, while excluding the greedy text st=0 which is most
likely to represent the leaked data potentially memorized by the
LLM.

Se = {s | s ∈ S ∧ ED(s, st=0) > τ}, (8)

where τ ∈ [0,+∞) is a hyper-parameter to control the difference.
2) Remove Duplicates. It aims to remove the duplicate sampling

results, especially those differing from st=0, which are also less
likely to duplicately occur in the uncontaminated sampling results.

Sr = {si|si ∈ S ∧ ∀j < i, sj ̸= si}. (9)

In the evaluation phase, an evaluation metric E using TED to
mitigate the impact of data contamination can be defined as:

ETED(M;x) ≡ ETED(S;x) = E(Se ∧ Sr;x), (10)

The pseudocode of TED for contamination mitigation evaluation is
shown in Algorithm 2.

Algorithm 2 The pseudocode of TED.
Require: LLM M, the prompt of test data x, evaluation metric E ,

and hyper-parameter τ = 2.
Ensure: Evaluation performance ep.

1: Sample S from M with the input x.
2: Exclude peakedness to compute Se via Eq. (8).
3: Remove duplicates to compute Sr via Eq. (9).
4: Obtain ep based on E via Eq. (10).
5: return ep.

3.4 Memorization Generalization Index

For a benchmark D = {xk, yk}k∈[1,|D|], where |D| represents
the number of test data {xk, yk}, we seek to evaluate the
generalizability of LLM’s performance on the benchmark.

Although CDD can detect the number of contaminated test
data in the benchmark for LLMs, thereby reflecting the models’
memorization rate, it requires the setting of a detection threshold as
part of its contamination detection approach. Ideally, MGI should
be able to well reflect the generalizability of LLM’s performance on
the benchmark without considering this threshold. Therefore, MGI
is designed as the average peakedness of LLM’s output distribution
on the benchmark:

MGI =
1

|D|
∑

k∈[1,|D|]

Peak(M;xk), (11)

where Peak(M;xk) is calculated via Eq. (5).

4 EXPERIMENT

In this section, we first introduce two datasets, DETCON and
COMIEVAL, tailored for the tasks of data contamination detection
and contamination mitigation evaluation, respectively (§ 4.1). We
then evaluate the efficacy of CDD on DETCON dataset (§ 4.2)
and assess the performance of TED on COMIEVAL dataset (§ 4.3).
Additionally, we conduct the case study to showcase the difference
between samples in contaminated and uncontaminated scenarios
(§ 4.4). Finally, we demonstrate the application results of both
CDD and TED in real-world scenarios, and we provide the
application of MGI to multiple well-known open-source LLMs on
HumanEval benchmark (§ 4.5).

4.1 Dataset

Considering the absence of datasets for data contamination detec-
tion and contamination mitigation evaluation tasks, we dedicate
more than 2100 hours to constructing the DETCON and COMIEVAL

datasets, utilizing two A6000 GPUs (48GB × 2).
We simulate data contamination by training LLMs using

benchmark data. To cover various scenarios of data contamination,
we consider different settings, including two domain benchmarks
leaked on four LLMs, two contamination form (i.e. explicit and
implicit leaked data), using three different learning rates during
training, four mixing ratios of leaked data with other training data,
and 21 degrees of contamination (i.e., occurrences). The detailed
statistics can be found in Table 1. Due to the high cost of large-scale
pre-training, we employ LoRA [17] to fine-tune the base models
on these various settings. On this basis, we construct the DETCON

and COMIEVAL datasets.
We further describe the different data contamination scenarios,

as well as how we collect and process data from these scenarios to
construct the dataset.

First, we prepare the data and models:
1) Test Data. We choose the HumanEval [1] dataset for code

generation and the GSM8K [2] dataset for logical reasoning.
2) LLMs. For code generation tasks, we use CodeLlama-7B [18]

and CodeGen-6.7B [19]; for logical reasoning tasks, we select
Llama2-7B [20] and Bloom-7B [21].

3) Training Data. Code generation tasks use the training data
from StarCoder [22], while logical reasoning tasks use
RedPajama [23].
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TABLE 1
Detailed statistics of simulating different data contamination scenarios of LLMs.

Domain Leaked Dataset Base LLMs Other Training Data Mixing Ratio Learning Rate Occurrences Contamination Form

Code Generation HumanEval {CodeLlama, CodeGen} StarCoder data 1 : {0, 0.1K, 1K, 10K} {1e-3, 2e-4, 4e-8} [0, 20] {Explicit, Implicit2}Logical Reasoning GSM8K {Llama2, Bloom} RedPajama data

TABLE 2
The statistics of DETCON and COMIEVAL datasets, where each text is equipped with the probability.

Dataset Task Nums Inputs (optional) per task Outputs per task

DETCON 1112 / 1112 a prompt, the original answer, 51 sampled texts, and the model parameter ‘contaminated’ / ‘uncontaminated’
COMIEVAL 560 leaked dataset, 51 sampled texts of each leaked data, and model parameters evaluation performance

TABLE 3
The differences between CDD and other contamination detection approaches, where N-gram and LLM Decontaminator are designed to detect the

contamination of training data rather than models.

Approach Not Need Prob. Not Need Param. Not Need Other LLM Consider Implicit Contamination

N-gram [14] " " " %

Embedding similarity " % " %

Perplexity [15] % " " %

Min-k% Prob [16] % " " %

LLM Decontaminator [9] " " % "

CDD " " " "

TABLE 4
Comparison of CDD and other contamination detection approaches, where † denotes the application of the approach needs additional conditions as

shown in Table 3 and the bold italic indicates the highest value other than CDD, which is also the baseline of the relative improvement.

Approach DETCON (Code Generation) Average DETCON (Logical Reasoning) Average
Accuracy F1 Score AUC Accuracy F1 Score AUC

N-gram (char-level) 0.484 0.593 - 0.538 0.564 0.67 - 0.617
N-gram (token-level) 0.541 0.302 - 0.422 0.656 0.498 - 0.577
Embedding similarity† 0.524 0.569 0.571 0.554 0.592 0.645 0.668 0.635
Perplexity† 0.513 0.593 0.491 0.532 0.497 0.664 0.699 0.620
Min-k% Prob† 0.563 0.524 0.565 0.550 0.527 0.677 0.698 0.634
LLM Decontaminator† 0.535 0.578 - 0.556 0.509 0.433 - 0.471
CDD 0.715 0.694 0.761 0.724 (↑ 30.2%) 0.706 0.765 0.846 0.773 (↑ 21.8%)

Next, we construct the dataset DETCON for data contamination
detection, starting with the construction of uncontaminated samples.
We directly use the outputs generated by LLMs on the test data,
representing uncontaminated data. Then, we construct contaminated
samples by simulating different contamination scenarios:

1) Explicit and Implicit Contamination. Explicit contamination
refers to the direct use of test data for training, while implicit
contamination refers to training with variants of the test data.

2) Proportion in the training data. We use different amounts
of training data mixed with test data to train LLMs. The
proportions of the test dataset mixed with training data include
1:0, 1:0.1k, 1:1k, 1:10k.

3) Different learning rates. Considering the effect of learning
rate on model training, we chose three different learning rates:
1e-3, 2e-4, and 4e-8.

4) Degree of data contamination. Training LLMs with con-
taminated data for more epochs indicates a higher degree of
contamination. Epochs range from 0 to 20, where 0 means no
training of LLM, indicating no contamination, reserved for
constructing uncontaminated samples.

By combining these four different scenarios, we can construct a
variety of composite data contamination scenarios. For each piece
of test data, we randomly select the results generated by LLMs
under one of the contamination scenarios as the contaminated
samples. Following the previous works [24], [25], [26], [27], [28],
in generating these samples, we also record the outputs of greedy
search with a temperature parameter of 0 (1 sample) and 50 samples
obtained by sampling with a temperature of 0.8.

This construction approach aims to comprehensively cover
possible data contamination scenarios, ensuring we can accurately
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Fig. 5. The effectiveness of CDD for data contamination detection in explicit and implicit contamination forms.

assess the performance of LLMs in the face of different
types and degrees of data contamination.

Finally, we construct the dataset COMIEVAL for contamination
mitigation evaluation. We selected 560 LLMs and their generated
outputs from all the constructed contaminated LLMs as the task
inputs. Then, we used the performance of the corresponding
uncontaminated LLMs on these two test datasets as the target
output, serving as the evaluation criterion. Table 2 demonstrates
the statistics of DETCON and COMIEVAL, respectively.

DETCON contains 2224 data contamination detection tasks,
covering two domains (code generation and logical reasoning) and
two contamination forms (explicit and implicit), which need to
detect whether a specific LLM has contamination on a particular
data. We randomly select the data from the leaked dataset and the
LLM from the settings in Table 1, where occurrence 0 refers to
‘uncontaminated’ and the others denote ‘contaminated’.

COMIEVAL contains 560 contamination mitigation evaluation
tasks, consisting of a randomly selected contaminated model from
Table 1 and the corresponding uncontaminated model, which need
to evaluate the performance of the contaminated model and try
to mitigate the impact of data contamination to approach the
performance of the uncontaminated model.

2. We rephrase leaked data and each problem in the variant of leaked data has
another correct solution different from the original solution, where the majority
is generated by ChatGPT and about 10% is generated by ChatGPT-assisted
humans.

4.2 Data Contamination Detection

4.2.1 Effect of CDD

Setup. We compare CDD with baselines, including 1) N-gram: We
employ widely-used 13-gram for both char-level and token level; 2)
Embedding Similarity: Use the embedding of the base model to
compute similarity; 3) Perplexity: Compute the perplexity of the
original answer given the prompt; 4) Min-k% Prob: Compute the
minimum k% probability of the original answer given the prompt,
and 5) LLM Decontaminator: Use other LLM to determinate the
similarity and we employ ChatGPT as this LLM. The differences
between CDD and baselines are shown in Table 3. For hyper-
parameters, we set α = 0.05, ξ = 0.01, the cap of l as 100 for
CDD by default, and baselines follow the settings in their original
paper.
Results As presented in Table 4, compared with other contamina-
tion detection approaches, CDD attains SOTA performance in both
code generation and logic reasoning domains. CDD exhibits steady
improvements across the Accuracy, F1 Score, and AUC metrics,
with the average relative improvement ranging between 21.8% and
30.2%. Moreover, the advantage of CDD is that it only requires
the sampled texts of LLMs to detect data contamination, without
the need for the additional conditions in Table 3.

We also evaluate the performance of CDD and other contam-
ination detection approaches in identifying explicit and implicit
forms of data contamination, as shown in Figure 5. In the cases of
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Fig. 6. The effect of our TED on model performance as the degree of data contamination increases under different settings. The legend displays the
settings for specific data leakage scenarios.

explicit contamination, as the degree of contamination increases,
the detection effectiveness across all approaches improves. CDD
outperforms the other approaches at lower contamination degrees,
which are more challenging to detect. In contrast, in the cases of
implicit contamination, CDD alone maintains robust performance,
whereas the other approaches encounter significant limitations.

We fix the hyper-parameter α and ξ intuitively for CDD in the
experiments. In Figure 4 (a) and (b), we analyze the influence of
α and ξ empirically on DETCON dataset by changing itself and
fixing another hyper-parameter. The results indicate that there is
still room for further improvements with the better hyper-parameter
setup of α and ξ.

4.2.2 Multi-source Contamination
Setup. Considering that real-world contamination typically origi-
nates from multiple sources, which collectively impact the model’s
performance on the benchmark, we have developed a new version of
DETCON, referred to as DETCON (Multi-source). In this version,
each sample is under the multi-source contamination scenario.
Specifically, for each leaked task in the benchmark, we construct
three different versions of the leaked task and employ them to
continue training the base models, thereby simulating the multi-
source contamination scenario. The remaining construction steps
are consistent with those of the original DETCON.

Results. As demonstrated in Table 5, our CDD remains
effective in detecting data contamination even in more realistic and

complex scenarios. Its performance significantly surpasses that of
other contamination detection approaches in terms of Accuracy, F1
Score, and AUC metric, achieving an average relative improvement
of 25.5%, indicating its superiority.

TABLE 5
Comparison of CDD and other contamination detection approaches on
DETCON (Multi-source), where † denotes the application of the approach

needs additional conditions as shown in Table 3 and the bold italic
indicates the highest value other than CDD, which is also the baseline of

the relative improvement.

Approach Accuracy F1 Score AUC Average

N-gram (char-level) 0.534 0.544 - 0.539
N-gram (token-level) 0.532 0.293 - 0.412
Embedding similarity† 0.536 0.597 0.563 0.565
Perplexity† 0.448 0.589 0.389 0.475
Min-k% Prob† 0.478 0.566 0.481 0.508
LLM Decontaminator† 0.581 0.545 - 0.563
CDD 0.696 0.681 0.749 0.709

4.3 Contamination Mitigation Evaluation

Setup. We evaluate the effectiveness of TED for contamination
mitigation in different learning rates, base LLMs, mixing ratios,
contamination forms, and occurrences on COMIEVAL. We set the
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Setup

Model Name CodeLlama-7b

Task ID HumanEval/122

Occurrence 2 (the leaked data is encountered twice during training)

Prompt \ndef add_elements(arr, k):\n """\n Given a non-empty array of integers arr and an integer k, return\n the sum of the elements with

at most two digits from the first k elements of arr.\n\n Example:\n\n Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4\n Output: 24 # sum

of 21 + 3\n\n Constraints:\n 1. 1 <= len(arr) <= 100\n 2. 1 <= k <= len(arr)\n """\n

Standard

Solution

return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)\n

Variant of

Standard

Solution

sum = 0\n for i in range(k):\n if len(str(arr[i])) <= 2:\n sum += arr[i]\n return sum

Samples on Explicit Contaminated Scenario with Original Leaked Data

return sum(x for x in arr[:k] if len(str(x)) <= 2)

return sum(a for a in arr[:k] if len(str(a)) <= 2)

# Time Complexity O(n)\n return sum(x for x in arr[:k] if len(str(x)) <= 2)

return sum([x for x in arr[:k] if len(str(x)) <= 2])

return sum(arr[:k] if len(str(elem)) <= 2 else 0 for elem in arr[:k])

return sum(x for x in arr[:k] if len(str(x)) <= 2)

return sum(arr[:k])

return sum([x for x in arr[:k] if len(str(x)) <= 2])

return sum(e for e in arr[:k] if len(str(e)) <= 2)

return sum([e for e in arr[:k] if len(str(e)) <= 2])

Samples on Implicit Contaminated Scenario with Variant Leaked Data

sum = 0\n for i in range(k):\n if len(str(arr[i])) <= 2:\n sum += arr[i]\n return sum

sum = 0\n for i in range(k):\n if len(str(arr[i])) <= 2:\n sum += arr[i]\n return sum

sum = 0\n count = 0\n for i in range(k):\n if len(str(arr[i])) <= 2:\n sum += arr[i]\n count += 1\n return sum if count <= 2 else 0

total = 0\n for i in range(k):\n if len(str(arr[i])) <= 2:\n total += arr[i]\n return total

sum = 0\n for i in range(k):\n if len(str(arr[i])) <= 2:\n sum += arr[i]\n return sum

sum = 0\n count = 0\n for i in arr[:k]:\n if len(str(i)) <= 2:\n count += 1\n sum += i\n if count <= 2:\n return sum\n else:\n return 0

total = 0\n for i in range(k):\n if len(str(arr[i])) <= 2:\n total += arr[i]\n return total

sum = 0\n for i in range(k):\n if len(str(arr[i])) <= 2:\n sum += arr[i]\n return sum

sum = 0\n for i in range(k):\n if len(str(arr[i])) <= 2:\n sum += arr[i]\n return sum

count = 0\n sum = 0\n for num in arr[:k]:\n if len(str(num)) <= 2:\n sum += num\n count += 1\n return sum if count <= k else 0

Samples on Uncontaminated Scenario

# Edge case\n if k == 0:\n return 0\n\n # Sort the array\n arr.sort()\n\n # Initialize the sum\n sum = 0\n\n # Iterate over the rst k elements\n

for i in range(k):\n # Add the element to the sum\n sum += arr[i]\n\n # If the sum is greater than 100, remove the rst element\n if sum >

100:\n sum -= arr[i]\n\n # Return the sum\n return sum

\n sum = 0\n count = 0\n for i in range(k):\n sum += arr[i]\n while sum > 9:\n count += 1\n if count > 2:\n return 0\n sum = sum % 10\n return sum

# initialize result and max_digit\n result, max_digits = 0, k\n\n # add elements to result\n for digit_count in range(1, max_digits + 1):\n result +=

sum(arr[:digit_count])\n\n return result

# Edge Cases\n if len(arr) == 1:\n return arr[0]\n\n res = 0\n n = len(arr)\n for i in range(n-k+1):\n digit_arr = [int(x) for x in str(arr[i+k-1])]\n if

len(digit_arr) <= 2:\n res += arr[i+k-1]\n return res

\n # edge case\n if len(arr) <= k:\n return sum(arr)\n\n # initialize variables\n arr_sum = 0\n i, j = 0, k\n\n # iterate through original array\n while i <=

j:\n # check if element value is two digits\n if len(str(arr[i])) == 2:\n # add element value to sum\n arr_sum += arr[i]\n i += 1\n\n return arr_sum

def check_length(num):\n return len(str(num)) <= 2\n\n ans = 0\n for i in range(k):\n if check_length(arr[i]):\n ans += arr[i]\n return ans

# check if elements are two digits\n if len(str(max(arr[:k]))) >= 2:\n return 0\n # get sum of all elements\n arr_sum = sum(arr[:k])\n left_sum =

sum(arr[:k - 1])\n # get sum of two digit numbers in the kth position\n if arr[k - 1] >= 10:

result = 0\n digits, size = [0] * 10, len(arr)\n\n for i in range(size):\n t = arr[i]\n if t == 0: continue\n n = 0\n while t > 0:\n t //= 10\n n += 1\n digits[n] +=

1\n\n for i in range(k):\n if digits[i] <= 2:\n result += arr[i]\n\n return result

# Brute Force\n # Time complexity: O(nk)\n # Space complexity: O(1)\n # n = len(arr)\n # k = len(arr)\n # for i in range(k):\n # sum = 0\n # for j in

range(i, n):\n # sum += arr[j]\n # if len(str(sum)) <= 2:\n # return sum

sum_ = 0\n digits = 0\n for i in range(k):\n n = arr[i]\n digits += int(len(str(n)))\n if digits <= 2:\n sum_ += n\n return sum_

Fig. 7. Case study of samples on the explicit and implicit contaminated scenario as well as the uncontaminated scenario.
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hyper-parameter τ = 2 and use Pass@1 [1] as the evaluation
metric E .
Effect of TED. TED can steadily mitigate the performance
improvements across different settings and occurrences in data
contamination scenarios, as shown in Figure 6. Moreover, the
advantage of TED is that the performance influence of TED on
the uncontaminated model (i.e. 0 occurrences) is small and almost
negligible. However, as contamination degrees continue to increase,
the performance influence of TED becomes apparent in all of the
different settings.

TABLE 6
Ablation Study of TED, where RD and EP mean the rules of remove

duplicates and exclude peakedness in TED, respectively.

Occurrences
Approach 0 1 7 14 20

Pass@1 0.219 0.257 0.553 0.846 0.930
+ RD 0.212 0.244 0.486 0.740 0.831 (↓ 10.7%)
+ EP 0.212 0.242 0.371 0.335 0.320 (↓ 65.5%)
Pass@1TED 0.209 0.241 0.364 0.321 0.308 (↓ 66.9%)

We analyze the effects of each component in TED, as shown in
Table 6. The main function is provided by the rule of exclude
peakedness, followed by the rule of remove duplicates. Both
components are beneficial to TED and are also effective when
employed alone.

As illustrated in Figure 4 (c), an increase in the hyperparameter
τ for TED leads to a more pronounced suppression of the
performance improvements attributable to data contamination.
Meanwhile, it also marginally decreases the performance of the
uncontaminated models.

4.4 Case Study

Setup. We compare the output samples of LLMs between the
contaminated and uncontaminated scenarios. Specifically, we em-
ploy CodeLlama-7B to simulate data contamination on Humaneval
benchmark. The contamination degree (occurrence) is set as 2,
indicating that the leaked data was encountered twice during
continuous training. For the explicitly contaminated scenario, we
use the standard solutions of tasks in Humaneval as the leaked data,
while for the implicit contaminated scenario, we use its variant
solutions as the leaked data, maintaining the rest of the settings
identical.
Results. In Figure 7, we display the outputs of LLMs on Task 122
from HumanEval under both contaminated and uncontaminated
scenarios. This includes the sample generated using greedy search
(highlighted in bold text) and the first 10 samples. It is evident
that in the uncontaminated scenario, the model tends to generate a
variety of dissimilar results with different expressions. Conversely,
in the contaminated scenario, the LLM consistently produces simi-
lar outputs, regardless of whether the contamination is explicit or
implicit, showing a clear peakedness of LLM’s output distribution.
Note that the occurrence is merely 2, suggesting that even minimal
exposure to the test data during training can significantly impact
the output distribution. Furthermore, despite the challenge that
implicit data contamination poses—where LLM outputs deviate
significantly from the original correct answers and thus elude
current contamination detection approaches—we observe that
it shares characteristics with explicit data contamination. This

similarity is the cornerstone for the effectiveness of our proposed
approaches in detecting implicit data contamination.

4.5 Real-World Application

4.5.1 Data contamination for ChatGPT
Setup. In real-world applications, we apply CDD and TED for
ChatGPT and construct two new datasets to assist evidence: 1)
CodeForces2305 comprises 90 of the easiest level programming
problems collected from the CodeForces website since May 2023,
which is after the most recent update deadline of ChatGPT’s
training data, i.e., April 2023. 2) HumanEval_R is reconstructed
on HumanEval, which replaces its function signature, translates its
requirements into German, French, and Chinese, selects different
public test cases from the work [30] to prompt, and remains the
private test cases for testing. To enhance the detection precision,
we set the hyper-parameters α to 0 and ξ to a larger value of 0.2
for CDD. We keep τ at the default value of 2 for TED.

TABLE 7
Data contamination detection and contamination mitigation evaluation for

ChatGPT, where ‘pre’ and ‘post’ present ChatGPT’s APIs with fixed
versions ‘0613’ and ’1106’ respectively, and CR means the ratio of

contaminated tasks detected by CDD in the benchmark.

Benchmark Model Pass@1 MGI ↓ CR ↓ Pass@1TED

pre 0.6131 0.1314 0.2379 0.5535HumanEval post 0.7248 0.2326 0.4147 0.5964
pre 0.4301 0.0455 0.0976 0.4012HumanEval_R post 0.4684 0.0594 0.1097 0.4171
pre 0.0619 0.0049 0 0.0616CodeForces2305 post 0.0790 0.0063 0 0.0785

Results. As shown in Table 7, on HumanEval dataset, both two
versions of ChatGPT exhibit high MGI and Contamination Ratio
(CR), and the ‘post’ version become higher as ChatGPT continues
to learn on new data. Considering the implementation of more
stringent α and ξ, it is posited that ChatGPT is likely to suffer
from data contamination on HumanEval dataset and become more
serious over time. This hypothesis is further evidenced through
evaluations conducted on HumanEval_R and CodeForces2305
datasets. HumanEval_R indicates their high MGI and CR are not
easily attributable to the difficulty of problems. By modifying
prompt forms through a process of reconstruction, all of the
performance, MGI, and CR of ChatGPT are significantly reduced.
On CodeForces2305 dataset, which is unlikely to be involved in
data contamination, ChatGPT’s performance was markedly lower
than anticipated, with the MGI at less than 0.01 and CR of 0.
Moreover, TED demonstrates significant effectiveness on both the
contaminated HumanEval and HumanEval_R.

4.5.2 Application of MGI
Setup. We apply MGI to multiple well-known open-source LLMs
(i.e., ChatGPT [31], CodeLlama [18], CodeGemma [32], Aix-
Coder [33], CodeQwen [34], Deepseek-Coder [35], StarCoder [22])
on HumanEval Benchmark [1], and evaluate their performance on
HumanEval as well as its extended version HumanEval-ET [30].
The other settings are the same as in the preceding Section.
Results. As shown in Table 8, we have the following findings:
First, the MGI of most models is small (less than 0.1), whereas
the MGI of GPT-3.5-turbo-1103 is much higher compared to GPT-
3.5-turbo-0613, reaching a value of 0.2326. Therefore, despite
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TABLE 8
Memorization Generalization Index (MGI) of open-source LLMs on HumanEval Benchmark, where CR means the ratio of contaminated tasks

detected by CDD in the benchmark.

Model MGI ↓ CR ↓ Pass@1 (temp = 0) Pass@1 (temp = 0.8)

HumenEval HumenEval-ET HumenEval HumenEval-ET

GPT-3.5-turbo-1103 0.2326 0.4147 0.7439 0.5915 0.7248 0.5778
GPT-3.5-turbo-0613 0.1314 0.2379 0.6585 0.5122 0.612 0.4776
CodeLlama-7b 0.0417 0.0731 0.311 0.2378 0.2211 0.1832
CodeLlama-7b-python 0.0525 0.0914 0.3841 0.3354 0.3062 0.2568
CodeLlama-7b-instruct 0.0908 0.1341 0.3537 0.2988 0.2876 0.2455
CodeLlama-13b 0.0412 0.0732 0.3415 0.2927 0.2405 0.2015
CodeLlama-34b 0.0651 0.1098 0.4817 0.4146 0.3478 0.2906
CodeLlama-70b 0.0523 0.0793 0.5244 0.4512 0.4317 0.3615
CodeGemma-2b 0.0112 0.0061 0.3537 0.2805 0.2161 0.1771
CodeGemma-7b 0.0548 0.0976 0.4329 0.3537 0.3316 0.2779
Deepseek-Coder-6.7b 0.0602 0.1036 0.4817 0.3963 0.3388 0.2798
Deepseek-Coder-6.7b-instruct 0.0893 0.1585 0.7134 0.628 0.6494 0.5673
Starcoder2-7b 0.0579 0.0732 0.3659 0.3232 0.2905 0.2438
Starcoder2-15b 0.0552 0.0793 0.4695 0.4024 0.3406 0.2795
AiXCoder3-7b 0.0578 0.0853 0.5427 0.4451 0.4545 0.3826
CodeQwen1.5-7b 0.0361 0.0488 0.439 0.3841 0.3884 0.3279
CodeQwen1.5-7b-Chat 0.1098 0.189 0.6951 0.6098 0.6368 0.5566

its superior performance on HumanEval and HumanEval-ET, the
comparison of actual generalization ability between them is still
a concern. Second, MGI and CR are positively correlated. On the
benchmark, the more contaminated the model is, the higher its MGI,
and the weaker its generalization performance on the same task.
Third, models using the same training dataset usually have similar
MGIs 3, such as the CodeLlama-7b, 13b, 34b, and 70b. Fourth,
instruction tuning is likely to introduce implicit contamination,
considering that the instruction-tuned versions of each LLM have
higher MGIs than the base version. Note that this is not directly
related to the performance improvement of LLMs, because we
find that CodeLlama-7b-python, which is specially trained with
Python data, has higher performance than CodeLlama-7b-instruct
(instruction-tuned version), but its MGI is much lower than that of
CodeLlama-7b-instruct.

5 RELATED WORK

5.1 Data contamination detection.
The concept of data contamination for LLMs can be derived from
the context of GPT-3 [14]. Due to the vastness of the pre-training
corpus of GPT-3, it inevitably overlapped with some evaluation
benchmarks. Therefore, GPT-3 adopted 13-gram overlap detection
to remove the data in the training set that conflicts with the test set
of benchmarks.

Some work [5], [6], [36], [37] exposed the serious consequences
of data contamination and urged attention to this problem. However,
most currently released LLMs did not open their pre-training
corpus, which poses a new challenge for data contamination
detection. Recent work tried to detect contamination without access
to the pre-training corpus [38], [39], [40]. Min-k% Prob [16]
calculated the average of the k% smallest probabilities of generated
tokens and considered it as contaminated if it exceeded a certain
threshold. The work [15] assumed that data leaked into the training
set tends to exhibit lower perplexity and utilizes perplexity analysis
for detection. However, they often require other model outputs (e.g.
probability) in addition to text, presenting challenges in detecting

3. CodeGemma-2b and 7b employ the different training datasets, as stated in
their paper [32].

closed-source LLMs like ChatGPT, and they ignore the potential
implicit contamination from variants of test data.

Recent investigations [9], [10] have suggested that filtering
training data based on n-grams may not effectively address the
issue of data contamination, especially concerning semantically
equivalent sentence rephrasing. To this end, LLM Decontaminator
[9] detected the similarity of test data and training data based on
other advanced LLMs.

Our work requires only sampled texts to detect LLM’s data
contamination via output distribution and considers the potential
implicit contamination.

5.2 Contamination Mitigation Evaluation.

To mitigate the impact of data contamination and ensure trust-
worthy evaluations, several approaches focus on constructing new
evaluation benchmarks [40]. The work [41] employs an LLM
to paraphrase the contaminated dataset for evaluations. However,
LLM’s synthetic data is widely used for training, which already
contains lots of paraphrased data [9]. The work [42] leverages
temporal information to construct a benchmark beginning from
January 2023. However, building a high-quality benchmark is costly
and time-consuming, and unfortunately, the training data deadline
for ChatGPT and GPT-4 has been updated from September 2021
to April 2023 and continues to be delayed.

Our work achieves contamination mitigation evaluation from
the standard of LLM’s output distribution and is orthogonal to the
preceding works.

6 LIMITATIONS

Our work has several limitations, which we aim to address in our
future work:

First, the validation of our work is mainly focused on bench-
marks for code generation and logical reasoning, which are highly
representative and widely adopted. In the future, we will further
validate our approaches on other benchmarks.

Second, our approaches require multiple samplings to compute
the output distribution, and the more samplings conducted, the
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better the effect. We can use parallel sampling techniques to speed
up sampling, thereby reducing time overhead.

Third, considering the limitation of computational resources,
we employ a popular parameter-efficient fine-tuning approach,
i.e., LoRA, instead of full-parameter fine-tuning to simulate data
contamination for LLMs. In future work, we plan to attempt full-
parameter fine-tuning.

Finally, in constructing our datasets, we assume that the four
base LLMs used do not suffer from data contamination on the
selected benchmarks. However, in reality, these LLMs may have
slight data contamination. To completely avoid this issue, it might
be necessary to retrain an LLM from scratch on a training set
known to be entirely free of test data. However, undertaking such a
process would be prohibitively costly.

7 CONCLUSION

In this paper, we have proposed two novel approaches, namely
CDD and TED, to deal with data contamination detection and
contamination mitigation evaluation for LLMs, considering the
LLM’s output distribution. We introduce a new evaluation metric,
MGI, to assess the generalizability of LLM evaluation results
across the benchmark. We construct two corresponding datasets,
i.e., DETCON and COMIEVAL, for these two tasks. Extensive
experimental results indicate the superiority and versatility of CDD
and TED. Moreover, we also discover that ChatGPT is likely to
suffer from data contamination on HumanEval dataset, and MGI
is applied to well-known open-source LLMs, offering a novel
dimension for evaluating model performance on the benchmark.
We hope to shed light on this direction and call more attention to
data contamination issues.
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